WRITTEN HOMEWORK \#4, DUE FEB 3, 2010

If you want more practice with cylindrical coordinates without having to calculate integrals, look at Problems 1-16 of Chapter 16.7. If you want more practice with spherical coordinates, look at problems 1-16 of Chapter 16.8. Doing these problems on your own is strongly recommended; most of them are short so they won't take as long as you may initially think.
(1) (Chapter 16.6, Problem \#16) Evaluate the triple integral $\iiint_{T} x y z d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0),(1,0,1)$.
(2) (Chapter 16.6, Problem \#30) Express the integral $\iint_{E} f(x, y, z) d V$ as an iterated integral in six different ways, where E is the solid bounded by $y^{2}+z^{2}=9, x=$ $-2, x=2$.
(3) (Chapter 16.7, Problem \#18) Evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where E is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
(4) (Chapter 16.7, Problem \#28) Evaluate the following integral by changing to cylindrical coordinates:

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

(5) (Chapter 16.8, Problem \#24) Evaluate $\iiint_{E} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V$, where E is enclosed by the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant.
(6) (Chapter 16.8, Problem \#28) Find the average distance from a point in a ball of radius a to its center. (Recall that the average value of a function $f(x, y, z)$ on the region E is given by the expression

$$
\frac{1}{V(E)} \iiint_{E} f(x, y, z) d V
$$

where $V(E)$ is the volume of E.)

